The Sign of a Permutation
Matt Baker

Let σ be a *permutation* of $\{1,2,\ldots,n\}$, i.e., a one-to-one and onto function from $\{1,2,\ldots,n\}$ to itself. We will define what it means for σ to be *even* or *odd*, and then discuss how the parity (or *sign*, as it is called) behaves when we multiply two permutations. Finally, we will prove a useful formula for the sign of a permutation in terms of its cycle decomposition.

Two-line representation

One way of writing down a permutation is through its *two-line representation*

\[
\begin{pmatrix}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{pmatrix}.
\]

For example, the permutation α of $\{1,2,3,4,5,6\}$ which takes 1 to 3, 2 to 1, 3 to 4, 4 to 2, 5 to 6, and 6 to 5 has the two-line representation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 2 & 6 & 5 \end{pmatrix}$.

Graphic representation

We can visualize the permutation σ as a (bipartite) graph G_σ by writing the numbers 1, 2, \ldots, n in two rows and joining i (in the top row) to $\sigma(i)$ (in the bottom row) with an edge for all i. For example, the graph corresponding to the permutation α above is:

![Graph G_α](image)

Inverting and multiplying permutations

Given a permutation σ, its *inverse* σ^{-1} is the permutation sending $\sigma(i)$ to i for all $i = 1, \ldots, n$.

For example, the inverse of the permutation α and β above is $\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$.

In terms of the graphic representation, inverting a permutation corresponds to interchanging the top and bottom rows of the corresponding graph.
Given permutations σ and τ of $\{1,2,\ldots,n\}$, their product $\sigma \tau$ is the function $i \mapsto \sigma(\tau(i))$, i.e., we compose the two permutations as functions. Note that in general $\sigma \tau \neq \tau \sigma$; for example, if α is as above and $\beta = (123456)$, then $\alpha \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 4 & 2 \end{pmatrix}$ and $\beta \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 1 & 2 & 4 \end{pmatrix}$.

In terms of graphic representations, to compute $\sigma \tau$ we concatenate the diagrams corresponding to each, with τ placed above σ. For example, the following picture represents $\beta \alpha$ in our running example:

![Figure 2: Graphical representation of $\beta \alpha$](image)

Cycle decomposition

Another way of writing down a permutation is through its cycle decomposition. A permutation σ is called a k-cycle if there exist distinct elements $i_1, i_2, \ldots, i_k \in \{1,\ldots,n\}$ such that

$$
\sigma(i_1) = i_2, \sigma(i_2) = i_3, \ldots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1,
$$

and $\sigma(i) = i$ for all other i. We denote such a cycle by $\sigma = (i_1 i_2 \cdots i_k)$. A 2-cycle is also called a transposition. Note that every element of a cycle can be considered as the starting point, so for example $(1234) = (2341)$.

The basic fact about permutations and cycles is the following:

Lemma: Any permutation can be written as a product of disjoint cycles. This representation is unique, apart from the order of the factors and the starting points of the cycles.

We will not give a formal proof of this result (though it’s not difficult), but will instead describe the algorithm underlying its proof and give some examples.

Algorithm: (Decompose a permutation into a product of disjoint cycles)

WHILE there exists $i \in \{1,\ldots,n\}$ not yet assigned to a cycle:
Choose any such i;

- Let ℓ be the smallest positive integer such that $\sigma^\ell(i) = i$;
- Construct the cycle $(i \sigma(i) \cdots \sigma^{\ell-1}(i))$.

RETURN the product of all cycles constructed.

Example: The cycle decomposition of α is $(1342)(56)$. Indeed, if we start with $i = 1$ then following the above algorithm we have $\ell = 4$ and we construct the cycle (1342). We next choose the unused element $i = 5$ and construct the cycle (56), and we’re done.

Similarly, the cycle decomposition of β is $(15462)(3)$. It is customary to omit fixed elements in cycle notation, so we could also write β as simply (15462).

Note that (1234) and (2341), for example, determine the same cycle, and that $(12)(34)$ and $(34)(12)$ represent the same permutation. We can make the cycle decomposition unique by requiring that each cycle begins with its smallest element, and that the cycles are ordered with increasing smallest elements.

Inversions and signature

A pair (i, j) with $i, j \in \{1, 2, \ldots, n\}$ is called an inversion of σ if $i < j$ but $\sigma(i) > \sigma(j)$. The inversion number $\text{inv}(\sigma)$ is the total number of inversions of σ. The permutation σ is called even (resp. odd) if $\text{inv}(\sigma)$ is even. The sign of σ is defined as $\text{sign}(\sigma) = (-1)^{\text{inv}(\sigma)}$. So $\text{sign}(\sigma) = 1$ if σ is even and $\text{sign}(\sigma) = -1$ if σ is odd.

It is easy to see that a pair (i, j) is an inversion of σ if and only if the edges $i \sigma(i)$ and $j \sigma(j)$ cross in the graphic representation of σ. Thus the inversion number $\text{inv}(\sigma)$ equals the number of crossings in G_σ. This observation implies that $\text{inv}(\sigma) = \text{inv}(\sigma^{-1})$, and hence $\text{sign}(\sigma) = \text{sign}(\sigma^{-1})$.

The sign is multiplicative

We have the following fundamental formula:

$$\text{sign}(\sigma \tau) = \text{sign}(\sigma) \cdot \text{sign}(\tau).$$

To see this, note that (i, j) is an inversion in $\sigma \tau$ if and only if the paths starting at i and j cross in the top half of the composite graph but not the bottom, or in the bottom half but not the top. If they cross in both, as with 5 and 6 in Figure 2 above, then the crossings
cancel out (in the figure, (5,6) is not an inversion for \(\beta \alpha\)). Thus \(\text{inv}(\sigma \tau) \equiv \text{inv}(\sigma) + \text{inv}(\tau) \pmod{2}\), which is equivalent to (1).

The sign and cycle decompositions

Suppose \(\sigma = \sigma_1 \sigma_2 \cdots \sigma_t\) is the cycle decomposition of a permutation \(\sigma\). Applying (1) repeatedly, we see that

\[
\text{sign}(\sigma) = \text{sign}(\sigma_1) \cdots \text{sign}(\sigma_t). \tag{2}
\]

So in order to compute the sign of an arbitrary permutation, it suffices to compute the sign of a cycle.

We first consider the sign of a transposition \(\tau = (i, j)\). We claim that \(\tau\) is odd. To see this, note that an edge \(kk\) with \(k < i\) or \(k > j\) contributes no crossing, while each edge \(kk\) with \(i < k < j\) contribute two crossings (see Figure 3 below). There is only one additional edge, namely \(ij\), which contributes one crossing. Thus the total number of crossings is odd, as claimed.

![Figure 3: Crossings in a transposition](image)

Now let \((i_1 i_2 \cdots i_\ell)\) be a cycle of length \(\ell \geq 3\). One checks easily that

\[
(i_1 i_2 \cdots i_\ell) = (i_1 i_2) \cdots (i_{\ell-2} i_{\ell-1}) (i_{\ell-1} i_\ell)
\]

and therefore the sign of an \(\ell\)-cycle (for all \(\ell \geq 1\)) is \((-1)^{\ell-1}\). In other words, odd cycles are even and even cycles are odd.

By formula (2), we conclude that if the cycle decomposition of \(\sigma\) is \(\sigma_1 \sigma_2 \cdots \sigma_t\) and \(\sigma_i\) has length \(\ell_i\), then

\[
\text{sign}(\sigma_1 \sigma_2 \cdots \sigma_t) = (-1)^{\sum_{i=1}^t (\ell_i - 1)}. \tag{3}
\]

Naturality

In addition to being a useful computational tool, formula (1) shows that the sign of a permutation is *intrinsic*, in the following sense. Suppose we replace 1 by \(\tau(1)\), 2 by \(\tau(2)\), etc. in both rows of the two-line representation of \(\sigma\), where \(\tau\) is some permutation. Then \(\sigma\) is transformed into the *conjugate permutation* \(\sigma' = \tau^{-1} \sigma \tau\). By (1), we have

\[
\text{sign}(\sigma') = \text{sign}(\tau^{-1}) \text{sign}(\sigma) \text{sign}(\tau) = \text{sign}(\sigma) \text{sign}(\tau)^2 = \text{sign}(\sigma),
\]
so that σ and σ' have the same sign.

This implies, in particular, that while the number of inversions of σ depends on our choice of an ordering of the set $\{1, 2, \ldots, n\}$, the sign of σ does not.

For an application to number theory, suppose p is an odd prime and g is a primitive root modulo p, and let a be an integer not divisible by p, so that $a \equiv g^k$ for some integer k. Let σ be the permutation of $\{1, 2, \ldots, p-1\}$ induced by multiplication by a modulo p and let σ' be the permutation of $\{0, 1, \ldots, p-2\}$ induced by addition of k modulo $p-1$. Then $\sigma' = \tau^{-1} \sigma \tau$, where $\tau : \{0, 1, \ldots, p-2\} \to \{1, 2, \ldots, p-1\}$ is defined by $\tau(j) \equiv g^j \pmod{p}$. By (1), the sign of σ is equal to the sign of σ'. (This is an important point in Zolotarev’s proof of the Law of Quadratic Reciprocity.)

Acknowledgments

I have drawn from two main sources for this handout: Martin Aigner’s “A Course in Enumeration” and Peter J. Cameron’s “Combinatorics”. The three figures above are all from Aigner’s book.